
The International Journal of
Biostatistics

Volume 5, Issue 1 2009 Article 2

The Comparison of Alternative Smoothing
Methods for Fitting Non-Linear

Exposure-Response Relationships with Cox
Models in a Simulation Study

Usha S. Govindarajulu∗ Elizabeth J. Malloy† Bhaswati Ganguli‡

Donna Spiegelman∗∗ Ellen A. Eisen††

∗Harvard Medical School, ugovindarajulu@bics.bwh.harvard.edu
†American University, malloy@american.edu
‡University of Calcutta, bgstat@calcuniv.ac.in

∗∗Harvard School of Public Health, stdls@channing.harvard.edu
††University of California, Berkeley, eeisen@berkeley.edu

Copyright c©2009 The Berkeley Electronic Press. All rights reserved.



The Comparison of Alternative Smoothing
Methods for Fitting Non-Linear

Exposure-Response Relationships with Cox
Models in a Simulation Study∗

Usha S. Govindarajulu, Elizabeth J. Malloy, Bhaswati Ganguli, Donna
Spiegelman, and Ellen A. Eisen

Abstract

We examined the behavior of alternative smoothing methods for modeling environmental epi-
demiology data. Model fit can only be examined when the true exposure-response curve is known
and so we used simulation studies to examine the performance of penalized splines (P-splines),
restricted cubic splines (RCS), natural splines (NS), and fractional polynomials (FP). Survival
data were generated under six plausible exposure-response scenarios with a right skewed expo-
sure distribution, typical of environmental exposures. Cox models with each spline or FP were fit
to simulated datasets. The best models, e.g. degrees of freedom, were selected using default cri-
teria for each method. The root mean-square error (rMSE) and area difference were computed to
assess model fit and bias (difference between the observed and true curves). The test for linearity
was a measure of sensitivity and the test of the null was an assessment of statistical power. No one
method performed best according to all four measures of performance, however, all methods per-
formed reasonably well. The model fit was best for P-splines for almost all true positive scenarios,
although fractional polynomials and RCS were least biased, on average.

KEYWORDS: penalized spline, simulation, restricted cubic spline, natural spline, fractional
polynomial, Cox model
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INTRODUCTION 
 
Smoothing methods are widely used to analyze epidemiologic data, particularly in 
the area of environmental health where nonlinear relationships are not 
uncommon. These methods avoid parametric constraints on the shape of the 
exposure-response relationship and permit adjustment for cyclical patterns in the 
confounders. Most such applications fit cubic functions using splines (natural 
splines, restricted cubic splines, or penalized splines) or else apply fractional 
polynomials. There have been several recent examinations of the performance of 
these smoothing techniques. Steenland and Deddens (2004) described both 
penalized splines and restricted cubic splines in a review of alternative modeling 
approaches in occupational epidemiology. Höllander and Schumacher (2004) 
compared restricted cubic splines and fractional polynomials in Cox models 
through simulations and improved estimation of risk functions through bagging. 
In another report, we applied penalized splines, restricted cubic splines (stepwise), 
and fractional polynomials in survival models to data from two occupational 
cohort studies (Govindarajulu et al, 2007) and compared results. Restricted cubic 
splines (stepwise) and penalized splines were found to be closer to each other than 
either was to the fractional polynomial in both datasets where they were used to 
model lung cancer mortality as a function of lifetime exposure, to respirable 
crystalline silica (Checkoway et al, 1997) and to uranium, measured as radon 
progency (Samet et al, 1991). The distribution of exposure in both studies was 
skewed; bounded by zero with a long right tail, as is commonly observed in 
environmental and occupational studies (Johnson and Rappaport, 2007). Although 
the behavior of alternative smoothing techniques in relation to each other is of 
interest, their performance relative to the truth is of greater interest.  

Motivated by these applications to real data, we turned to simulations in 
which we could create plausible exposure-response scenarios and evaluate model 
fit directly. In the present study we evaluated the performance of a broader range 
of smoothing techniques in simulated data, in which we know the exposure 
distribution and shape of underlying exposure-response curve. We first describe 
the alternative smoothing techniques we used to fit exposure-outcome data within 
a Cox model. These techniques were applied to data generated under six different 
scenarios, and the simulation framework is described in the next section along 
with the methods used to evaluate model fit. We then present results from the 
simulations.  Finally, we draw conclusions regarding this work and future 
applications.     
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METHODS 
 
Methods for fitting splines and fractional polynomials 
 
We modeled non-linear exposure-response relationships using penalized splines, 
restricted cubic splines, natural splines, and fractional polynomials.  We used the 
Cox proportional hazards regression model (Cox and Oates, 1985), where the 
model for the mortality rate for the ith subject at time t is: 

 
))(exp()()|( 0 ii XgtXt λλ =       (1) 

 
where g is a smooth function of the cumulative exposure Xi defined by the 
particular smoothing method. Each smoothing method is described below in more 
detail. 

 
1) Restricted cubic spline (RCS) 
 
The RCS is a cubic regression spline constrained to have continuous first and 
second derivatives at the knots (Hastie and Tibshirani, 1990) for visual 
smoothness (Durrelman and Simon, 1989).  RCS are further constrained to be 
linear above the last knot and below the first (Durrelman and Simon, 1989). The 
linearity in the tails allows for a more parsimonious model. 
 To model the dose-response relationship using a restricted cubic spline 
transformation, we first select H values, say (κ1< κ2<. . . < κH), within the 
observed range of the exposure. In the standard software implementation, these 
values, or knots, are located at a pre-specified number of evenly-spaced quantiles 
of the exposure distribution.  We then assume the model in Eq. 1 is given by 
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and the Xih’s are non-linear functions determined by the position of the knots.   
The H-2 spline variables created by the restricted cubic spline function are 

included in the Cox proportional hazard regression model, and standard modeling 
techniques can then be applied.  We first implemented the RCS within R using the 
function, rcspline.eval, with a default of 5 knots, which uses a truncated 
power basis as described above (R 2.3.1, 2006). 

We also implemented a stepwise RCS within a SAS macro written by one 
of us (D Spiegelman) and is described in Govindarajulu et al (2007). A stepwise 
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selection procedure was used that starts with 25 knots to select spline variables 
that adhere to a specified entry and exit criteria determined by a user-defined 
significance level (default entry and exit levels are 0.05).  The final model 
includes the exposure variable and whatever spline variables were retained using 
the stepwise selection procedure. 
 
2) Penalized spline (P-spline) 
 
P-splines were fit using the standard software implementation in R (R 2.3.1, 
2006).  P-splines offer an approach to selecting optimal smoothing via degrees of 
freedom (df) that is relatively robust to the choice of location and relatively large 
number of knots by modeling the smooth function, s, as defined in Eq. 2. The Xih, 
where  h=1,..,H-2, are non-linear basis functions corresponding to a large number 
of knots, H.  In the pspline function in R, the Xih’s are B-spline basis 
functions, piecewise polynomials joined by knots (R 2.3.1, 2006).  The number 
and location of knots have little influence on the shape of the P-spline curve, as 
long as the knots are adequately spaced and the number of knots is sufficiently 
large (Ruppert, 2002).   

We considered two implementatons of the pspline function within a 
Cox model fit in R, the standard implementation which uses df = 4 as the criterion 
for smoothing (R 2.3.1, 2006). and an alternative model selection criterion based 
on minimizing Akaike’s Information Criteria (AIC) (Akaike, 1974; Therneau and 
Grambsch, 1998) to select df. The AIC criterion, as implemented in the pspline 
function in R/Splus begins with a default of 15 spline terms in the B-spline basis 
expansion (R 2.3.1, 2006;Therneau and Grambsch, 2002).  AIC then selects the 
optimal smoothing parameter that is used in the penalized partial likelihood fit, 
which is equivalent to selecting the optimal df (Therneau and Grambsch, 1998). 
The chosen knots are then evenly spaced across the range of X, i.e, the exposure 
variable. 
 
3) Natural spline (NS) 
 
The natural spline is essentially a restricted cubic spline as defined in Eq. 2 which 
instead of piecewise polynomials, uses B-splines basis functions, for Xih, where  
h=1,..,H-2.  B-spline basis functions were described in more detail in the previous 
section.  We used the function, ns, in R to model the natural spline (R 2.3.1, 
2006).  We specified a usual default df of 4, where df = number of knots + 1 + 1 
(if include intercept from the basis function).  The ns function generates a basis 
matrix, which represents the family of piecewise-cubic splines with the specified 
sequence of interior knots and the natural boundary conditions.  This constrains 
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the function to be linear beyond the boundary knots, which default to the extremes 
of the data. 
 
4) Fractional polynomials (FP) 
 
Like P-splines and RCS, fractional polynomials may be used with any generalized 
linear model or Cox model for survival data (Royston and Altman, 1994). 
Although a global (rather than local) approach, the FP model has the advantage of 
being a simpler form than the other two options, and incorporating a wider range 
of functional forms than that permitted by the standard polynomial family. A 
greater range of possible dose-response relationships could be accommodated. An 
FP of degree m is defined as follows (Royston and Altman, 1994a): 

∑
=

=
m

j
ijjim XVXg

0
)(),;( ββ p       (3) 

 where m is generally taken to be either 1 or 2, p= {-2, -1, -0.5, 0, 0.5, 1, 2, 3} is a 
set of powers with p1<…<pm, and β = (β 1, . . ., β m).  An m=1 model would use a 
single value from p for Vj (Xi), whereas for an m=2 model, two values are selected 
(Govindarajulu et al, 2007) .  An m=1 model would use a single value from p, call 
it pj so in Eq. 10, )( ij XV would be a single term, jp

iX , except when pj=0, then it 
would be )ln( iX  (Royston and Altman, 1994a; Royston and Altman, 1994).  

For an m=2 model, two values are selected from p, pj and pk. For example, 
if pj =-2 then pk can take on any of the values, {-2, -1, -0.5, 0, 0.5, 1, 2, 3}, to 
create all possible pairs with pj or if  pj =1 then pk can take any of the values, {1, 
2, 3} to create the pairs, {(1,1), (1,2) or (1,3)} with pj. In Eq. 10, )( ij XV  would 

now contain 2 terms. If kj pp ≠ , the two terms in Vj(Xi) are jp
iX and kp

iX . If, pj 

= pk ≠ 0, than the two terms in Vj(Xi) are jp
iX and )ln( i

p
i XX k . Finally, if pj = pk 

=0, then the two terms in Vj(Xi) are then ln(Xi) and ln(Xi)2 (Royston and Altman, 
1994a; Royston and Altman, 1994).  
 

There are 44 possible combinations of m=1 and m=2 models, where the 
highest degree fractional polynomial considered is m=2.  For a given m=1 or 
m=2 model, the best model is chosen to be the one with the lowest deviance. 
Since we are fitting Cox models we cannot simply define the deviance as -2*(log-
likelihood) (Collett, 2003). Therefore, in this context, each Cox model is first 
ranked by the value of its partial log-likelihood. In R (R 2.3.1, 2006), using the 
fp function of the mfp function, the FP is tested against the straight-line model 
initially. If the test is significant at the specified alpha level, it continues else it 
selects the linear model. Next, the best m=1 model and best m=2 model are tested 
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against each other and the final model is made. In our analyses, we transformed 
the exposure variable to a fractional polynomial, gm(Xi; β, p), which is then used 
as a predictor within the Cox model.  
 
Simulation Framework 
 
We first chose the distribution from which to simulate values for an exposure 
variable, x. In studies of environmental and occupational exposures, highly 
skewed exposure distributions are commonly encountered (Rosario et al, 2006).  
Exposure distributions are bounded by zero or the lower limit of detection of the 
measurement instrument and have no upper bound. Thus we employed the 
absolute value of the normal distribution with mean of 0 and standard deviation of 
6 to simulate all exposure data.  (It should be noted, that dose and exposure have 
different meanings in the field of environmental exposure assessment; “exposure” 
refers to a chemical or physical agent outside the body, whereas “dose” or 
“biomarker” refers to the amount of the agent that reaches the target organ inside 
the body (Johnson and Rappaport 2997).  This simulation is equally relevant to 
both, and we will use the terms synonomously.) 

For the dose-response curve, g(x), we generated the outcome under six 
different models:  null, linear, quadratic, log, sine, and threshold. (Although a sine 
curve is not a biologically plausible exposure-response relationship, we included 
it because smoothing is often used to adjust for diurnal or seasonal patterns in 
epidemiologic data.). 

The dose-response curve, g(x),for each different model is: null: 0, linear:  
β*x or 0.17*x, ln(x): β*ln(x+1) or 0.43*ln(x+1), sine: β*(sin(x/3)) or 
0.71*(sin(x/3)), quadratic: β*x*(x-b)2or 0.005*x*(x-40)2, and threshold: β*(x-b)+ 
or 0.35*(x-2) +.  Depending upon g(x), we set b to be at a particular percentile of 
the exposure distribution. For the threshold dose-response, we chose the cutpoint 
based on the 25th percentile of exposure. 

Since we were using a Cox proportional hazards regression, we generated 
the survival times using the hazard function. In proportional hazards form, the 
model containing g(x) is: 
 

))(exp()()|( 0 xgtxt λλ =        (4) 

where λ0(t) is the baseline hazard function and g(x) is the form of the exposure-
response curve. We allowed for a baseline Weibull hazard (Klein and 
Moschberger,1997), 1-

0 )( θθνλ tt = . Using the survival function, S(t) = 1-F(t), we 
obtained the baseline cumulative incidence function under the Weibull model at 
any time t, for a given exposure:  
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Allowing F0 to be average cumulative incidence among the unexposed, if there 
are 100 cases out of 2000 persons, then F0=0.05.   Solving for ν in Eq. 5, we 
obtained: 

))1log((1
0

*
F

t
−−=

θ
ν     (6) 

where t*=20 years of followup time and θ=5 is the shape parameter, which is 
typical value for many types of cancer (Armitage and Doll, 1961; Breslow and 
Day, 1987; Zucker and Spiegelman, 2004).    
 In addition, we defined S0(t) in terms of the baseline hazard:   

⎥
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⎤
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⎡
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0

000 )(exp))(exp()( λ     (7) 

We then modeled the survival times, t0, from a Cox model via the following, 
using the baseline cumulative hazard function, Λ0(t), the survival function, S(t), 
and the form of λ(t|x) (Eq. 4): 
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   (8) 

F(t) was then defined in terms of S(t) for the Cox model, using the form of Λ0(t) 
from the Weibull model, where )*))(exp(exp(1)|()|(1 ϑν txgxtFxtS −−==− , 
and we used this equation to define t0 in years:      
 

                                     
))(exp(

))(1log(
/1

0

θ

ν ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−=

xg
tFt                                         (9)  

 
where F is generated from a standard uniform distribution and ν is defined per Eq. 
6. After generating the survival times, we generated the competing risk times. We 
first obtained the cumulative incidence function from S(tw), similarly as for S(t) 
in Eq. 8, and generated the equation for competing risk time, tw, using an 
Exponential model:              
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γ

)2-1log(- Utw =                                                                          (10) 

 where F = U2 ~ Uniform(0,1) and γ was set to 10% which corresponds to 60% 
censoring per year.  To obtain the follow-up time, t, we set t= min(t0, tw) from 
Eq’s 9-10 and the event indicator, d=I[t0<tw].  The final simulated datasets 
contain: (x, t, d): exposure variable, follow-up time, and event indicator. 
 
Evaluating the Performance of Smoothing Approaches Fit to Simulated Data 
 
We simulated exposure distributions and survival times under each of the six 
dose-response scenarios and and then compared each fitted curve (P-spline, RCS, 
NS, and FP) to the true curve. Each smoothed curve was fit in a Cox Model via 
standard software implementations. We simulated datasets of size n = 2,000, and 
ran N=1,000 iterations under each scenario. (We found that increasing iterations 
did not change significantly change results.) We selected parameter values for the 
true functions (see table above) in order to maintain a constant number of events, 
approximately 200 cases, under any scenario.  

To compare the series of curves generated by each dose-response function, 
we evaluated four aspects of performance: 1) model fit as measured by Mean-
Square Error (MSE), 2) the p-value for the test of linearity, calculated as the 
proportion of times that the test of linearity is rejected (power of method to reject 
the null hypothesis that association is linear), 3) the p-value for the test of null 
effect, calculated as the proportion of times the test of null hypothesis was 
rejected, and 4) bias (difference between the observed and true curves), as 
assessed by the rMSE and area difference. Each of these four aspects is described 
below. 

The mean-square error calculation (MSE) involved taking the difference 
between log (hazard ratio) HR values predicted by each curve and values of the 
true dose-response curve at each observed data point along the x-axis.  This was 
computed for each simulated dataset. We actually calculated the root MSE 
(rMSE) 
           

          (11) 

where )(log ij xRH
)

 is the estimated curve for the  jth simulated data set evaluated 
at the ith subject’s exposure xi and )(log ij xHR is the value of the true curve at xi.   

∑
=

−=
n

i
iiii xHRxRHrMSE

1

2))(log)((log
)
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The fit of each smoothing method applied to each exposure-response scenario was 
then summarized by the median rMSE score (across datasets), where a lower 
score reflects a closer relationship between the true and the estimated curves. The 
distribution of rMSE was presented in boxplots and the median was used to 
summarize model fit to reduce the influence of the tails.    

We were also interested in the how often the test of linearity was rejected 
and how often the test of null effect was rejected by each smoothed model. For 
each hypothesis test, we estimated the proportion of times that the hypothesis was 
rejected in the 1000 replications for each smoothed function, fit to each dose-
response function.  In order to calculate the test of linearity for a given dataset, we 
computed the chi-square test: 

 
))]((2[)(2 xglxlΧ 2 −−−=       (12) 

where -2l(x) is -2*partial log-likelihood from the Cox model for x and -2l(g(x)) is 
the -2*partial log-likehood from the Cox model estimated for a particular g(x). 
We computed the p-value from Eq. 12 and reported the proportion of p-values 
less than or equal to the significance level of 0.05 across all simulations.  In order 
to calculate the test of null effect, we computed the likelihood ratio chi-square 
test: 

))]0((2[))((2 glxglΧ 2 −−−=      (13) 

where -2l(g(0)) is the -2*partial log-likelihood from the null Cox model. We 
obtained the p-value from Eq. 13 and computed the proportion of p-values greater 
than or equal to 0.05 across simulations. We also computed a Wald chi-square to 
test the null effect.    

The area calculations were computed using a method developed in a 
previous paper (Govindarajulu et al, 2007), based on summing across rectangles 
defined by a set of evenly-spaced values over the range of x. We computed the 
difference in area between the true and estimated dose-response curves (log HR) 
for each scenario. This allowed us to determine how close each spline curve was 
to the true dose-response curve over the entire span of the x-axis. In contrast with 
the MSE which summarizes the difference between curves at observed values of 
x, the area difference is measured giving equal weight to all x-values across the 
range of exposure. Thus the tails of the exposure distribution will give more 
weight in the estimation of bias (area difference) than in the calculation of model 
fit (rMSE).          
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RESULTS 
 
To summarize model fit, the median root mean-square error, and interquartile 
range (IQR), are presented for each scenario in Table 1. 
 
Table 1: Median (IQR) root mean-square error for selected methods in 
1000 simulated datasets (n=2000 subjects) generated for each of six 
scenarios of the true dose -response function  
Dose-response 
function 

 

Methods* 

 g(x) P-spline-  
AIC 

P-spline-  
df-4 

NS 
df=4 

RCS 
nk=5 

RCS 
stepwise 

FP 

log βlog(x+1) 0.296 
(0.183) 

0.221 
(0.176) 

0.290 
(0.279) 

0.349 
(0.155) 

0.343 
(0.148) 

0.362 
(0.118) 

sine βsin(x/3) 0.310 
(0.232) 

0.311 
(0.249) 

0.389 
(0.321) 

0.349 
(0.190) 

0.543 
(0.295) 

0.602 
(0.108) 

linear βx 0.103 
(0.151) 

0.162 
(0.155) 

0.292 
(0.290) 

0.230 
(0.135) 

0.070 
(0.090) 

0.065 
(0.078) 

quadratic βx(x-b) 0.182 
(0.152) 

0.182 
(0.157) 

0.293 
(0.300) 

0.253 
(0.143) 

0.187 
(0.125) 

0.121 
(0.114) 

null 0 0.187 
(0.243) 

0.291 
(0.215) 

0.368 
(0.317) 

0.213 
(0.157) 

0.138 
(0.192) 

0.121 
(0.166) 

threshold β(x-b)+ 
 

0.478 
(0.302) 

0.307 
(0.268) 

0.291 
(0.303) 

0.132 
(0.109) 

0.571 
(0.119) 

0.579 
(0.097) 

*AIC=Akaike’s Information Criteria was used as method of selection for optimal smoothness, df 
=degrees of freedom, and nk =number of knots.  The df and nk represent default software settings 
used for each spline. IQR: interquartile ratio. 

 
Corresponding boxplots are also presented for each scenario (Figures 1a-1f), 

transformed to the log scale in order to display the positive tails comprised of 
datasets with poorly fitting curves. All smoothing methods fit well when the true 
dose-response is linear, quadratic, or null, when summarizing across all results in 
Tables 1-4. P-splines (selected with df = 4) had the smallest median rMSE when 
the underlying exposure-response scenario was a logarithmic or sine function.  
Fractional polynomials fit the best for an underlying linear function, with the 
RCS-step not far behind. There was more variability in model fit for the P-spline 
(AIC) and RCS-step than the other methods for several different scenarios. The 
median df ranged from 1.0 to 2.9 across scenarios for Pspline-AIC and from 1.0 
to 2.0 for RCS-step. Thus, P-spline-AIC fit poorly in several individual datasets, 
despite having lowest rMSE for sine scenario and moderate rMSE scores for the 
remaining scenarios. When the true dose-response model was a threshold, the 
restricted and natural splines fit better than FP or P-splines (Figure 1f).    
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Figure 1: Boxplots of rMSE for selected methods in 1000 simulated datasets 
(n=2000 subjects) generated for each of the six scenarios of the true dose-
response function  

Pspline-AIC Pspline-df=4 NS RCS FP RCS-step
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N=1000, n=2000 for log dose-response curves
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0

2
4
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N=1000, n=2000 for sine dose-response curves
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M
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)
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4
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(r

M
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)
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N=1000, n=2000 for quadratic dose-response curves
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(r

M
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)

Pspline-AIC Pspline-df=4 NS RCS FP RCS-step
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0
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N=1000, n=2000 for null dose-response curves
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(r

M
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)

Pspline-AIC Pspline-df=4 NS RCS FP RCS-step

-6
-4

-2
0

2
4

6

N=1000, n=2000 for threshold dose-response curves

ln
(r

M
SE

)

 
The proportion of times the test of linearity was rejected is presented in 

Table 2 for each dose-response function.  As expected, most methods rejected 
linearity a small proportion of times when the true exposure-response was linear, 
and a high proportion when the true exposure-response was a sine function.  The 
test of linearity was rejected least often for the null scenario for all the splines 
except the P-spline-AIC.  The P-spline-AIC was least consistent in how often the 
test of linearity was rejected across the different dose-response functions.  The 
RCS-step and NS performed similarly well, while the RCS-nk=5 rarely rejects 
linearity under any scenario. We have omitted FP from these analyses because the 
models are non-nested and because the mfp function in R was not fully functional 
for Cox models in order to obtain results of this test. 
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Table 2:  Proportion of times test of linearity was rejected for selected splines 
in 1000 simulated datasets (n=2000 subjects) generated for each of six 
scenarios of the true dose-response function 
Dose-response 
function 

 

Methods* 

 g(x) P-spline-  
AIC 

P-spline-  
df=4 

NS 
df=4 

RCS 
nk=5 

RCS 
stepwise 

log βlog(x+1) 0.665 0.228 0.167 0.019 0.238 
sine βsin(x/3) 0.932 0.859 0.790 0.445 0.694 
linear βx 0.722 0.097 0.051 0.006 0.079 
quadratic βx(x-b) 0.679 0.300 0.227 0.036 0.369 

null 0 0.747 0.076 0.052 0.006 0.082 
threshold β(x-b)+ 

 
0.682 0.241 0.236 0.052 0.160 

*AIC=Akaike’s Information Criteria was used as method of selection for optimal 
smoothness, df =degrees of freedom, and nk =number of knots.  The df and nk 
represent default software settings used for each spline. 

 
In Tables 3-4, we present the proportion of times the test of null was 

rejected using the likelihood ratio test or the Wald test.  This test was rejected 
most often when the true exposure-response was linear, quadratic, or threshold, 
for all splines and fractional polynomials.  The test was rejected least often when 
the true dose-response scenario was null, as expected, though it was rejected most 
often in that case for P-spline-AIC.  FP rejected the test of null when the true 
scenario was a logarithmic function correctly, but performed poorly for the sine 
scenario.  
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Table 3:  Proportion of times test of null effect was rejected (likelihood ratio 
test) for selected methods in 1000 simulated datasets (n=2000 subjects) 
generated for each of six scenarios of the true dose-response function 
Dose-response 
function 

 

Methods* 

 g(x) P-
spline-  
AIC 

P-spline-  
df=4 

NS 
df=4 

RCS 
nk=5 

RCS 
stepwise 

FP 

log βlog(x+1) 0.954 0.876 0.840 0.769 0.940 1.000 
sine βsin(x/3) 0.911 0.853 0.796 0.697 0.733 0.008 
linear βx 1.000 1.000 1.000 1.000 1.000 1.000 
quadratic βx(x-b) 1.000 1.000 1.000 1.000 1.000 0.999 

null 0 0.153 0.077 0.055 0.033 0.088 0.002 
threshold β(x-b)+ 

 
1.000 1.000 1.000 1.000 1.000 1.000 

*AIC=Akaike’s Information Criteria was used as method of selection for optimal smoothness, df 
=degrees of freedom, and nk =number of knots.  The df and nk represent default software settings 
used for each spline. 

 

Table 4:  Proportion of times test of null effect was rejected (Wald test) for 
selected methods in 1000 simulated datasets (n=2000 subjects) generated for 
each of six scenarios of the true dose-response curve 
Dose-response 
function 

 

Methods* 

 g(x) P-
spline-  
AIC 

P-spline-  
df=4 

NS 
df=4 

RCS 
nk=5 

RCS 
stepwise 

FP 

log βlog(x+1) 0.938 0.843 0.750 0.775 0.995 1.000 
sine βsin(x/3) 0.762 0.693 0.538 0.570 0.616 0.004 
linear βx 1.000 1.000 1.000 1.000 1.000 1.000 
quadratic βx(x-b) 1.000 1.000 1.000 1.000 1.000 0.999 

null 0 0.101 0.042 0.031 0.028 0.085 0.003 
threshold β(x-b)+ 

 
1.000 1.000 1.000 1.000 1.000 1.000 

*AIC=Akaike’s Information Criteria was used as method of selection for optimal smoothness, df 
=degrees of freedom, and nk =number of knots.  The df and nk represent default software settings 
used for each spline. 
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We also computed the area difference between the true and estimated 
curves for each method and present the average for each scenario (Table 5).  The 
area calculations, which incorporate the effect of the tails of exposure, show some 
interesting contrasts with the rMSE results (Table 1).  Although the P-splines had 
smaller rMSE for several scenarios than the other methods, the P-spline, selected 
by AIC, was the most biased for the log and sine scenarios than all other methods. 
The RCS-step was more biased than the other methods for the threshold and 
linear scenarios.  The FP had the smallest area difference from the truth for almost 
all scenarios, perhaps due to the global fit of this approach in contrast with the 
locally fit splines. 

 
Table 5: Average (sd) difference in area between true and estimated dose-
response curves for selected methods in 1000 simulated datasets (n=2000 
subjects) generated from six scenarios of the true dose-response function 
Dose-response 
function 

Methods* 

 g(x) P-spline-  
AIC 

P-spline-  
df=4 

NS 
df=4 

RCS 
nk=5 

RCS 
stepwise 

FP 

log βlog(x+1) 30.43 
(683.01) 

7.02 
(3.16) 

8.47 
(4.07) 

8.16 
(3.66) 

8.38 
(8.05) 

7.17 
(6.80) 

sine βsin(x/3) 29.50 
(368.89) 

16.10 
(17.25) 

13.38 
(11.49) 

15.18 
(13.19) 

42.46 
(288.90) 

7.23 
(5.25) 

linear βx 4.63 
(4.22) 

5.26 
(3.03) 

14.55 
(6.39) 

5.46 
(2.83) 

3.23 
(3.58) 

2.89 
(14.97) 

quadratic βx(x-b) 6.48 
(6.58) 

6.34 
(3.38) 

9.99 
(4.57) 

6.22 
(2.91) 

6.01 
(42.49) 

5.80 
(8.85) 

null 0 13.42 
(58.16) 

13.28 
(11.76) 

10.65 
(8.09) 

8.71 
(7.65) 

22.15 
(466.00) 

5.82 
(4.92) 

threshold β(x-b)+ 
 

9.90 
(5.56) 

8.01 
(4.84) 

26.52 
(8.37) 

3.82 
(2.34) 

11.91 
(5.37) 

12.18 
(27.66) 

*sd:  standard deviation   
 
Visualization of the curves is represented in Figures 2(a-f), where for each 

scenario, the curve that generated the median rMSE is presented for each 
smoothing method.  The curves deviate more from the true curve in the upper 
range of exposure for almost every scenario, except the linear. Since each curve 
represents the one that has the minimum median rMSE, for each method, the 
results cannot be directly compared to the summary measures of performance 
presented in Tables 1.  Generally the plots indicate that all of the methods can 
capture the true dose-response curve well. However, the plots illustrate that even 
the best fitting example of each method, can deviate from the true curve, 
particularly in the sparsely populated tails of the distribution. This was 
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particularly true in Figure 2b and 2e, for some of the methods in the null and sine 
scenarios Finally, it is interesting that the Pspline-AIC is quite wiggly (Figure 2a) 
for the log dose-response curve. 

 
 Figure 2: The true dose-response curve for each scenario compared 
with the estimated curves selected for each method at the median rMSE 
based on 1000 simulated datasets (n=2000 subjects)  
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DISCUSSION 
 
We observed the model fit of three alternative splines (penalized splines, 
restricted cubic splines, natural splines) and fractional polynomials with 
knowledge of the true exposure-response curve through simulations.  By 
extending a previous study of the fit of various smoothing methods applied to 
actual data (Govindarajulu et al, 2007), we were better able to assess the accuracy 
(unbiasedness and reliability) of these methods for curve fitting under different 
dose-response scenarios.    

The P-splines (AIC or df=4) had among the lowest rMSE when fit to log 
or sine functions, while fractional polynomial fit best for linear relationships. The 
typical fit was good for all methods across all scenarios, but P-splines tended to 
exhibit the best behavior. However, the model selected by Pspline-AIC rejected 
linearity more often than the other methods – even when the truth was linear. The 
type I error for p-spline selected by AIC was unacceptably large, whereas it was 
below 0.1 for all other methods.  AIC also selected more poorly fitting p-spline 
models than did the default 4 degrees of freedom (df=4). 

The RCS-step also performed well compared to the P-splines and FP 
based on rMSE.  By contrast, the larger area difference (bias), for RCS, indicated 
that the fit was poorer in the higher exposure region. The RCS-nk=5 and NS were 
least consistent in all scenarios for all criteria, except in the threshold scenario, 
where they had smaller median MSE than the other methods. In all scenarios, we 
generated data from a skewed exposure distribution. It would be interesting to 
evaluate how the skewness of the exposure distribution affects the performance of 
these methods by repeating these simulations with the same exposure-response 
scenarios and uniform or normal exposure distributions.  

In regards to the Pspline with 4 df, the Pspline in general has a fixed 
number of knots and the df modifies the degree of smoothness of the fit; this 
corresponds to roughly 10 knots. Thus, depending on placement, it could be more 
sensitive to the cutpoint with this many knots.  We chose the cutpoint based on 
the 25th percentile of exposure because at the time having 25% of subjects with 
exposures below this seemed sufficient. To respond to the reviewer, we tested 
moving the changepoint to X=10 for the threshold dose-response instead. In fact, 
it seems that the RCS (nk=5) picks up this change better (rMSE=0.22) than the 
Pspline (df=4) (rMSE=0.32), which does even worse than the Pspline-AIC 
(rMSE=0.22). However, in terms of proportion of times test of linearity and test 
of null effect were rejected, all smoothing methods perform very poorly. It 
appears that moving the changepoint to a sparser area of data becomes more 
difficult to detect for the smoothing methods overall. 

A number of authors have suggested stepwise regression as a way of 
optimizing the fit of restricted cubic spline regressions and related regression 
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spline models (Durrleman and Simon, 1989; Eubank RL, 1984) while others have 
suggested an arbitrary fixed number of knots placed in a variety of a priori ways 
(Hess, 1994; Harrell et al., 1988; Heinzl, Kaider, Zlabinger, 1996). This is the first 
study we are aware of in which the performance of restricted cubic splines with 
fixed knot number and location, and with stepwise knot selection have been 
studied systematically by simulation. The nominal size and power of tests based 
upon the stepwise method appeared competitive with the other methods (Tables 
2-4), despite the somewhat ad hoc nature of the approach, consistent with their 
utility as an exploratory data analysis tool. 

Höllander and Schumacher conducted a simulation study to examine a 
number of methods for estimating dose-response curves that included fractional 
polynomials and restricted cubic splines.  They examined two nonlinear exposure-
response scenarios: a step function and an absolute value (v-shaped) function, in 
addition to the linear and null cases, and found that fractional polynomials were in 
general superior based on mean absolute errors and type I error rates. These 
results cannot be directly compared to ours, however, because of differences 
between the simulated distributions of exposures. Whereas they simulated 
exposures from a uniform distribution, we have generated right skewed exposure 
distributions to mimic real environmental exposures (Johnson and Rappaport, 
2007).  

In light of our findings, we may conclude that applying penalized splines 
to exposure-response data provides the most consistent fit.  It is interesting that 
the best fitting Pspline-AIC was a wiggly curve for one of the scenarios, a 
problem found previously when this method was applied to real data 
(Govindarajulu et al, 2007; Therneau and Grambsch, 1998). For a biologic model, 
wiggliness in uninterpretable and the default model selection criteria for P-splines 
in R, based on degrees of freedom, df = 4, avoids this unattractive feature. The 
median fit of NS was worse in five of the six scenarios than RCS (nk=5).  This 
was somewhat surprising given that NS employs B-spline basis functions. The 
rMSE measures overall performance but one may be interested in more specific 
aspects of the dose response curve such as whether a peak /dip/threshold is 
captured correctly, the % of times it is over/under estimated and so on.  This is at 
least one drawback of using rMSE calculations. 

It may be interesting to further compare these splines when fit by varying 
df rather than default software settings.  Also, although the RCS and NS were 
least consistent in fit to the various scenarios, it would be worthy to see if their 
performances improve beyond standard settings.  Finally, although the fractional 
polynomial was competitive with penalized splines in terms of all of the aspects 
of model performance, it should be kept in mind that FP are a polynomial model 
fit over the entire range of exposure, whereas the splines are locally fit over 
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discrete intervals of the exposure variable.  This difference may have implications 
for the robustness of the curves over different regions of the exposure range.  
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